Lecture 5

Now that we have seen what a subgroup is, the next question is to be able to check whether a subset H of a greep G is a subg--roup or not. Well, the first thing we definitely need is that the identity element io in H, otherwise me can sule out the possibility of H being a subgroup. If we follow the definition of a group, then we need to check 4 things to make sure that H is a subgroup. Here is a test which makes the work a little bit less.

Theorem [The Subgroup test] Let (G,.) be a group and H be a non-empty subset of G. Then H ≤ G is the following two conditions hold :-1. For all a, beH, a.beH and 2. For all a e H, a - I e H. Proof. To check that I is a group in itself under '.', we need to check that the operation 1.1 is a binary operation on H, the existence of identity, associativity and the existence of inverse. Condition 1) in the theorem gwontees that ''' is a binary operation on H. Since Gis a group, we know that (a.b).c = a.(b.c) & a,b,ceG and so in particular, à true for all a, b, c ∈ H.

For showing the existence of identity in H,
choose
$$a \in H$$
 ($a \in H \neq \phi$). New condition
2) tell us that $a^{-1} \in H$. Again, by
condition 1), 'o' & a hinary Operation on
H and so, $a \cdot a^{-1} = e \in H$.
Finally, condition 2) & precisely the exis-
-tence of inverse.

Before moving to eyclic groups, let's see two
official subgroups of a group.

$$\underline{Definitors}$$
 Center of a group
The center of a group G, denoted by Z(G) is
the subgroup of G which commutes with every
element in G, i.e.,
 $Z(G_1) = \sum_{i=1}^{n} a \in G_1$ ax = xa for all $x \in G_2^{n}$

Remark If G is non-abelian then
$$Z(G) \neq G$$
.

Exercise Prove that
$$Z(G)$$
 is a subgroup of G.
e.g. 1) If $G_1 = D_4$, then one can check
that $Z(G) = \{R_0, R_{180}\}$

Definition Centralizer of a in G
Let G be a group and a & G be a fixed
element in G. The contralizer of a in G
& the set of all elements in G which commute
with a, i.e.
$$C(a) = \{g \in G \mid ga = ag\}$$

Exercise Prove that
$$C(a) \leq G$$
, $\forall a \in G$.
e.g. Again let $G_1 = D_4$, then
 $C(R_0) = D_4 = C(R_{180})$
 $C(R_{90}) = \tilde{L}R_0, R_{90}, R_{180}, R_{270} \tilde{L} = C(R_{270})$
 $C(H) = \tilde{L}R_0, H, R_{180}, V \tilde{L} = C(V)$
 $C(D) = \tilde{L}R_0, D, R_{180}, D' \tilde{L} = C(D')$

Now that we have studied about subgroups, let's study for a while, about a very important class of groups - cyclic groups.

First recall, that a subgroup generated

by a simple element $a \in G$, denoted by $\langle a \rangle = \{a^R \mid R \in \mathbb{Z}\}$. Now a question arises, is if possible that the whole group can be generated by a single element. Let's see some examples: \neg

i)
$$(\mathbb{Z}, +)$$
. I claim that $\langle 1 \rangle = \mathbb{Z}$
(Recall that $L^{K} = \underbrace{1 + \dots + 1}_{K-\text{times}} = K \text{ in } (\mathbb{Z}, +)$).

Now, given any
$$n \in \mathbb{Z}$$
, we can write
 $n = 1 + \dots + 1$ if $n > 0$ and $n = (-1) + \dots + (-1)$
 $n - times$

is no negative. In any case, all the elements of Z can be written as a power of I and so Z is generated by a single element $\xi \perp \xi$.

$$\frac{\operatorname{Remark}}{\operatorname{Remark}} := \operatorname{By} \text{ the argument, same as above,}$$
one can show that $\langle -1 \rangle = \mathbb{Z}$ too, so a
group can be generated by more than one
elements.

ii) Consider
$$(\mathbb{Z}_{5,+})$$
. Again $\mathbb{Z}_{5} = \langle 1 \rangle_{as}$
any element of \mathbb{Z}_{5} can be written as a
power of 1 .

that the multiplication is modulo 9. $2^{\circ} = 1$ $2^{1} = 2$ $2^{2} = 4$ $2^{3} = 8$ $2^{4} = 16 = 7 \mod 9$ $2^{5} = 32 = 5 \mod 9$

So we got all the elements in U(9). Can be have more ? You can check that if we start taking more powers of 2, the above pattern starts repetating itself.

One: What is (47 and (5) in U(9)? <u>Exercise</u>: Suppose I tell you that above three one examples of cyclic groups. Try to make a definition of a cyclic group.